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ABSTRACT 
Hail storms are unique climatological events that 

are difficult to forecast yet unrelenting in their capacity 
to cause wide-spread agricultural and property damage.  
In this study, we aim to elucidate the spatial and 
temporal trends in hail days over the Continental United 
States from 1979 to 2018.  We leverage the 
discriminatory power of radar derived hail signatures, 
combined with ground validated hail sizes, to 
distinguish daily environments that produce potentially 
damaging hail.  In order to quantify the likelihood of 
damaging hail for any given day, we develop a neural 
network model which utilizes ERA5 based reanalysis 
variables.  Our model reveals that annual hail days are 
significantly increasing since 1979.  We find a 
statistically significant increase in severe hail 
environments in both frequency and coverage, with 1.4 
percent more land mass of the Continental United 
States experiencing hail every decade. 

 

INTRODUCTION 
Hail is one of the leading causes of weather-related 

property damage in the United States.  Over the past 
decade, billion dollar storm events have been increasing 
in frequency (1) (2) with hail making up a large 
climatologies have thus far either focused on modeling 
storm reports, reviewing trends in radar derived 
Maximum Estimated Hail Size (MESH), or have been 
confined to analysis of mesoscale parameters or derived 
indices.  We aimed to directly model daily radar derived 
hail signatures with atmospheric parameters from a re-
analysis dataset, thereby extending the spatial and 
temporal discriminatory power of radar onto a 40-year 
climatological scale. 

 
Our methodology differs from previous 

climatological studies in that we let our model learn a 

transfer function from a dense matrix of numerous 
atmospheric features.  Rather than limiting our 
algorithm to a select few variables or computing radar 
derived hail indices, we framed hail formation as a 
machine learning classification problem and posited 
that interactions across environmental variables are 
more informative to hail formation than any single 
variable. 

METHODS 
We pooled all filtered hail signatures from NOAA’s 

Severe Weather Data Inventory (SWDI) from 2005 to 
2017.  While the radar derived hail signatures provide a 
rich spatiotemporal profile of potential hail 
environments, the raw dataset is prone to multiple 
sources of error.  Specifically, false positives may occur 
when hail melts before it reaches the surface due to a 
high-freezing level, and overestimation may occur when 
the melting level is below the lowest radar beam (5).  In 
order to remove as many potential false positives from 
our dataset, we calibrated the indirect measurement of 
radar signatures to surface validated hail 
measurements.  We developed a discriminatory Damage 
Likelihood Index based on the severe probability 
threshold of all SWDI hail signatures, and their 
spatiotemporally matched surface measured hail size.  
We queried all available dates of hail capture from 
Understory’s network of ground based weather sensors 
(6), and merged over 3,800 overlapping spatio-
temporal records with the SWDI data.  For each hail 
storm, we computed the average measured maximum 
size of hail across all stations reporting hail.  Fig 1 shows 
the relationship between the SWDI severe probability 
filter and ground measured average maximum size.  We 
found that the severe probability threshold of 100 within 
the SWDI dataset provided the optimal threshold for 
detecting potentially ground-level damaging hail - a 
surface level average measured maximum size of .75 
inches. 
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While Storm Prediction Center reports are naturally 

biased towards population centers and reported 
intensities are quantized into categorical thresholds 
based on reference objects (7) (8), we validated our 
choice of radar filter utilizing all spatiotemporal 
matched storm reports.  Notably, Fig 2 reveals reported 
hail sizes begin a steady increase above a severe 
probability filter of 60 and exhibit a similar peak at a 
severe probability filter of 100%.  A one-sided t-test 
confirms the global maximum at 100 distinguishes 
storms that generate potentially damaging hail. 

 
All resulting SWDI hail signatures with a 100% 

severe probability of hail were re-gridded onto a 
standard .25 x .25 decimal degree (~30 km) grid 
corresponding to the ERA-5 dataset resolution.  The 
maximum MESH size was aggregated for each day to 
create a daily hail swath.  Each grid cell was then 
transformed into a daily corresponding binomial count 
of 92,887 unique space-time observed hail days. 

 
To elucidate relationships between atmospheric 

environments and conditions favorable to hail 
formation, we pooled surface-level data from ERA5, a 
methodologically consistent global weather and climate 
reanalysis dataset (9).  Our covariates of interest 
included freezing-degree height, K-index, total column 

ice water content, convective available potential energy, 
and convective inhibition, as these are parameters often 
used to forecast hailstorms (10) (11).  We computed the 
extreme values of each variable for the day and merged 
the data onto the corresponding CONUS hail grid.   

 
Discovering and including interaction effects in 

modelling a response variable of interest is a 
fundamental problem across disciplines (12).  
Numerical Weather Prediction models have advanced 
largely by incorporating interactions across large scale 
domains (13).  In addition to capturing informative 
interactions, avoiding inference from extraneous 
variables and collinear terms helps generalize a model’s 
performance; it is just as important to avoid overfitting 
parameters to an outcome of interest such that spurious 
correlations are not drawn.  In practice, computing the 
relevance of predictors along with their interaction pairs 
in algorithm development can be a computationally 
challenging task (14); variables are often included based 
on study-specific approximated thresholds.   In order to 
scale our optimization problem, we leveraged the 
stochastic gradient optimization advantages of neural 
networks.  We designed a regularized multi-layered 
feed-forward neural network architecture, with a 

Figure 1: Severe Weather Data Inventory Damage Likelihood Index 
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logistic output layer, allowing our model to exploit a 
fully dense matrix containing all covariates up to their 
third-degree polynomial feature interactions. 

 
Our tuned neural network utilized stochastic 

gradient optimization, with 𝐿2 regularization (15), 
enabling training with a total of 119 features, and over 1 
million observations.  A decaying learning rate helped 
guide the optimization procedure to a minimum while 
avoiding oscillation along the error surface (16).  Five K-
Fold hyperparameter cross-validation was performed 
on the optimizer, activation functions, number of 
hidden neuron layers and feature-interaction 
polynomial terms.  In reviewing some of the learned 
relationships, we find the activation matrix of the neural 
network has a bimodal shape centered about zero, 
indicating regularization primed the 256-layer network 
to focus on the most relevant features.   Model cross-
validation reveals our neural network outperforms a 
standard logistic regression model, and thus infers 
latent effects that correlate with hail formation from 
daily tabulated atmospheric variables.  The resulting 
model provides a spatially and temporally resolute 
posterior likelihood of hail over the Continental United 
States for any given day. 

 

RESULTS 

 Our neural network exhibited strong 
discrimination between hail-days and non-hail days on 
a random validation set of 100,000 space-time grid 
points, with an area under the receiver operating curve 
of .94.  Fig 3 shows the corresponding receiver operating 
curve. 

Figure 2: SPC-dervied Severe Weather Data Inventory Damage Likelihood Index 

Figure 3: Receiver Operating Characteristic Curves for Hail Neural 
Network 
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We find hail-days increasing at a statistically 
significant rate of 1.1 percent per year over all of the 
Continental United States, or 11.6 percent per decade.  
Fig 4 displays the annual change in hail-days by State, 
which shows Kansas leading the annual increase of hail 
days with 54 new hail-days per year, followed by 
Nebraska, South Dakota, Oklahoma, and North Dakota 
at 41, 36, 31, and 23 additional hail-days, respectively.  

Our model captures a significant Westward and 
Eastern regional expansion of hail-days, as shown in Fig 
6.  In reviewing atmospheric and surface level trends, we 
find a notable increase of convective parameters that 
correlate with our observed upward trend of hail days.  
Convective inhibition appears to be decreasing in the 
West, while a steady annual increase in average CAPE 
may concomitantly explain some of the increased hail 
days, shown in Figs 7, and 8, respectively.  Particularly 
noteworthy is the dramatic annual increase in CAPE in 
the Southwest and Northeast.  This is in line with other 
studies that have observed an increase in environmental 
conditions suitable for hail formation over the United 
States (17). 

 
While we find hail-days are expanding from the 

originally confined ‘Hail-Alley’ stretch from the Texas 
Panhandle up into the Dakotas, there is no evidence that 
frequency of hail is decreasing there - in fact, they 

remain areas with the largest annual increase in hail-
days.  Instead, it appears synoptic conditions are 
evolving to additionally favor hail formation in larger 
swaths of the country, with .14 percent, or 4,300 square 
miles, more of the Continental United States 
experiencing hail each year.  To quantify the increased 
societal impact, we merged gridded global population 
numbers (18) and computed the proportion of the 2010 
CONUS population that experienced any hail event 
during the year.  Relative to the 2010 population, we 
find 1.5 percent more of the population experiences hail 
per decade, demonstrating how hail environments are 
encroaching on a greater share of the population. 

Figure 4: Annual change in average hail-days by state. Asterisk 
indicates significant at 95% confidence interval. 

Figure 5: Annual trend in total hail-days by month. Asterisk 
indicates significant at 95% confidence interval. 
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DISCUSSION 
By directly modeling radar detected hail days, we 

are able to resolve a climatology that is consistent with 
other research and reveals a new phenomenon of hail-
days spreading outside of the central US core hail 
region.  Given our main source of inputs were NEXRAD 
hail signatures and ERA5 covariates, one must be 
mindful of the intrinsic biases of the inputs.  Some radar 
stations may be limited to specific azimuthal scan 
strategies and may not pick up hail as regularly as other 
locations (19).  Nonetheless, radar derived signatures of 
hail, calibrated with surface-level observations, allow 
for a much more spatially and temporally resolute 

model parameterization, as opposed to modeling 
conditions associated with storm reports.  Likewise, 
utilizing daily local environments, as opposed to 
monthly or annual temporal averages, allows for a more 
realistic mapping and accumulation of hail events, as 
the inherent stochasticity is preserved, enabling 
simulation-based risk forecasting.   

The background convective environments are based 
off of ERA5 model parameterizations and are also 
subject to those biases.  Nonetheless, previous studies 
have shown strong correlation between ERA5 
convective parameters and radiosonde data (11).  ERA5 
contains marked improvements over ERA-Interim, 
from integrating new input observations and expanding 
variational bias schemes, to drastically increasing the 

Figure 7: Change in Hail Days per decade. Shaded areas indicate significance at the 95% confidence interval. 

Figure 6: Annual percent change of 10 year moving average: Convective Inhibition 
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spatial resolution of model outputs.  While the spatial 
resolution has improved, we find our model 
underestimates hail in the Colorado Front-Range.  As 
with other studies, there appears to be a bias in re-
analysis models over the Rocky Mountain Region such 
that orographic effects are not adequately captured right 
off of the mountains (17), (20).  However, it appears 
ERA5 is able to resolve some of those effects in the South 
Dakota Black Hills as instability and low-level moisture 
convolves with the lee troughing off of the Rockies.  
Overall, there is strong agreement between our pooled 
daily modeled hail swaths and radar derived MESH, 
consistent with radar based climatologies (19).  By 
utilizing ERA5 variables to model daily hail swaths, we 
are able to infer statistically significant time trends in 
hail expansion that would not be possible at the short-
term scale of radar availability. 

 

CONCLUSION 
Our study reveals that radar derived severe hail days 

are increasing in frequency since 1979, in part, due to 
changing environmental conditions that favor hail 
formation.  Hail-days are both increasingly manifesting 
outside of the regular ‘Hail Alley’ (21) and becoming 
more common outside of the typical March-June 
season.  The Hail Alley of CONUS is extending eastward 
into the Appalachians, and southwestward into the 
Phoenix metro area. This expansion into large 
population centers, if trends hold, will almost assuredly 
cause property losses to increase nonlinearly.  As new 
population centers begin to experience hail events at 
more regular intervals, responding to and mitigating 
hail damage will become ever more important. 

 

The trends of increasing hail days in this study 
admittedly could have other factors contributing to it - 
namely due in part to natural variability of decadal 
oscillations of contributing meteorological factors, and 
in part due to a connection to climate change (22).  Fully 
accepting that a small sample size of data lends to 
making presumptuous assumptions over the long term, 
we nonetheless find notable trends in space and time 
over a forty year period, in agreement with other studies 
(23). 

 
Further work will include extending our model to 

the globe and expanding our training dataset to include 
additional pressure-level covariates.  A deeper dive into 
hail growth specifics such as focusing on the -10C to -
30C layer CAPE, and substituting MUCAPE values over 
surface based CAPE would be things to consider 
implementing to fine tune results (24).  Involving 
satellite data and its relation to severe weather such as 
identifying overshooting top instances and their 
relationship to very strong updrafts could narrow the 
focus to severe hail cases (25).  With the advent of real-
time hail sensing platforms providing a rich stream of 
hail distribution size data (6), we aim to further extend 
our analysis by modeling ground-truth hail size with re-
analysis variables.  
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SUPPLEMENT 

 
Supplement 1: Monthly average Hail-Days: January 

 

 
Supplement 2: Monthly average Hail-Days: February 
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Supplement 3: Monthly average Hail-Days: March 

 

 
Supplement 4: Monthly average Hail-Days: April 
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Supplement 5: Monthly average Hail-Days: May 
 

 
Supplement 6: Monthly average Hail-Days: June 

 

 
Supplement 7: Monthly average Hail-Days: July 
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Supplement 8: Monthly average Hail-Days: August 

 

 
Supplement 9: Monthly average Hail-Days: September 
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Supplement 10: Monthly average Hail-Days: October 
 

 
Supplement 11: Monthly average Hail-Days: November 

 

 
Supplement 12: Monthly average Hail-Days: December 
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Supplement 13: Average annual hail-days 

 

 
Supplement 14: First modeled occurrence of hail 

 



 

7 

 
Supplement 15: Last modeled occurrence of hail 

 

 
Supplement 16: Average annual percent change in hail days: 1979-1998 to 1999-2018. 
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Supplement 17: Total hail-days per year 

 


